Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Int J Mol Sci ; 22(10)2021 May 17.
Article in English | MEDLINE | ID: covidwho-1383880

ABSTRACT

Numerous viruses hijack cellular protein trafficking pathways to mediate cell entry or to rearrange membrane structures thereby promoting viral replication and antagonizing the immune response. Adaptor protein complexes (AP), which mediate protein sorting in endocytic and secretory transport pathways, are one of the conserved viral targets with many viruses possessing AP-interacting motifs. We present here different mechanisms of viral interference with AP complexes and the functional consequences that allow for efficient viral propagation and evasion of host immune defense. The ubiquity of this phenomenon is evidenced by the fact that there are representatives for AP interference in all major viral families, covered in this review. The best described examples are interactions of human immunodeficiency virus and human herpesviruses with AP complexes. Several other viruses, like Ebola, Nipah, and SARS-CoV-2, are pointed out as high priority disease-causative agents supporting the need for deeper understanding of virus-AP interplay which can be exploited in the design of novel antiviral therapies.


Subject(s)
Adaptor Proteins, Vesicular Transport/metabolism , HIV-1/metabolism , Herpesviridae/metabolism , SARS-CoV-2/metabolism , Ebolavirus/metabolism , Endocytosis , Humans , Nipah Virus/metabolism , Protein Transport , Virus Release , Virus Replication
2.
Cells ; 10(2)2021 02 16.
Article in English | MEDLINE | ID: covidwho-1106076

ABSTRACT

Parkinson's disease (PD) is the second most common neurodegenerative disease, afflicting ~10 million people worldwide. Although several genes linked to PD are currently identified, PD remains primarily an idiopathic disorder. Neuronal protein α-synuclein is a major player in disease progression of both genetic and idiopathic forms of PD. However, it cannot alone explain underlying pathological processes. Recent studies demonstrate that many other risk factors can accelerate or further worsen brain dysfunction in PD patients. Several PD models, including non-mammalian eukaryotic organisms, have been developed to identify and characterize these factors. This review discusses recent findings in three PD model organisms, i.e., yeast, Drosophila, and Caenorhabditis elegans, that opened new mechanisms and identified novel contributors to this disorder. These non-mammalian models share many conserved molecular pathways and cellular processes with humans. New players affecting PD pathogenesis include previously unknown genes/proteins, novel signaling pathways, and low molecular weight substances. These findings might respond to the urgent need to discover novel drug targets for PD treatment and new biomarkers for early diagnostics of this disease. Since the study of neurodegeneration using simple eukaryotic organisms brought a huge amount of information, we include only the most recent or the most important relevant data.


Subject(s)
Animals, Genetically Modified/metabolism , Neurodegenerative Diseases/metabolism , Neurons/metabolism , Parkinson Disease/metabolism , Animals , Animals, Genetically Modified/genetics , Caenorhabditis elegans/metabolism , Disease Models, Animal , Humans
3.
J Mol Biol ; 433(11): 166705, 2021 05 28.
Article in English | MEDLINE | ID: covidwho-917347

ABSTRACT

Most cells in multicellular organisms are somehow asymmetric, polarized: maintaining separate membrane domains. Typical examples are the epithelial cells (apical-basal polarization), neurons (dendritic-axonal domains), or migratory cells (with a leading and a trailing edge). Here we present the most comprehensive database containing experimentally verified mammalian proteins that display polarized sorting or secretion, focusing on epithelial polarity. In addition to the source cells or tissues, homology-based inferences and transmembrane topology (if applicable) are all provided. PolarProtDb also offers a detailed interface displaying all information that may be relevant for trafficking: including post-translational modifications (glycosylations and phosphorylations), known or predicted short linear motifs conserved across orthologs, as well as potential interaction partners. Data on polarized sorting has so far been scattered across myriads of publications, hence difficult to access. This information can help researchers in several areas, such as scanning for potential entry points of viral agents like COVID-19. PolarProtDb shall be a useful resource to design future experiments as well as for comparative analyses. The database is available at http://polarprotdb.enzim.hu.


Subject(s)
Databases, Factual , Epithelial Cells/cytology , Epithelial Cells/metabolism , Membrane Proteins/metabolism , COVID-19/metabolism , COVID-19/virology , Cell Movement/physiology , Cell Polarity/physiology , Genes , Glycosylation , Host Microbial Interactions , Humans , Phosphorylation , Protein Interaction Maps , Protein Transport , Proteome , SARS-CoV-2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL